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Lagrange interpolation by finite-dimensional spaces of uni- and multivariate
generalized spline functions (including polynomial splines) is studied. Using a con-
dition of Schoenberg- Whitney type, it is shown how to change an almost interpola-
tion set in order to obtain a set which admits unique Lagrange interpolation.
Moreover, it is shown that every regular space of univariate generalized splines is
a weak Chebyshev space if and only if every interpolation set can be characterized
by a modified Schoenberg Whitney type condition. ¢ 1995 Academic Press. Inc.

l. INTRODUCTION

We are interested in Lagrange interpolation using finite-dimensional
spaces U of multivariate spline functions defined on a polyhedral region K
in R*. The problem is to study configurations T={t,, ..., 1,} = K where
s<n=dim U and T is a set of distinct points such that

dim U|r=s.

In the case when s = # this implies that for any given data {»,, .., »,} there
exists a unique function u € U such that

u(t;)=y; i=1,.,n
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For univariate splines this problem is completely solved by Schoenberg and
Whitney [4]. They have shown that interpolation is possible if and only if
the points of interpolation are appropriately interlaced with the knots of
the splines.

Recently, we have introduced a condition of Schoenberg—Whitney type
and have shown in [ 7] that this condition characterizes all configurations
T in K such that 7 is an almost interpolation set (Definition 2.1, Theorem
2.3). Applying this result we are now interested in the question of how to
change an almost interpolation set in order to obtain a configuration which
admits unique Lagrange interpolation {Theorem 3.1). In the case of
bivariate linear splines we are able to develop a simple algorithm to deter-
mine interpolation sets (Theorem 3.4).

In Section 4 we consider the case of univariate generalized splines. We
introduce the so-called strong condition of Schoenberg-Whitney type
(SSW-condition) which is always necessary for any configuration 7T to be
an interpolation set, and we are interested in which generalized spline
spaces have the SSW-property; i.e. the SSW-condition is also sufficient for
any T to be an interpolation set. In this context the class of weak
Chebyshev subspaces of C[a, b] plays an important role. Our main result
states that a regular generalized spline space U has the SSW-property if
and only if U is a weak Chebyshev space ( Theorem 4.9).

Finally, in Section 5 we show that for a class of generalized splines our
results stated in Section 4 extend results on interpolation by generalized
splines and weak Chebyshev spaces given in [3] and by Davydov [2],

respectively.
In the proof of Theorem 4.6 we present a method to construct a wide
class of interpolation sets T'={r,,...t,} for every se {1, ... n}.

2. A CHARACTERIZATION OF ALMOST INTERPOLATION SETS

Recently, in [ 7] we have introduced a condition of Schoenberg—Whitney
type to study the problem of interpolation by multivariate splines. To
formulate it let

K=K,
iel

where K, is a convex polyhedron in R*¥ (k> 1), ie ] and I denotes a finite
subset of N. Assume that K; & {J, 1 K, Moreover, assume that K is
connected and for all 4, je{, i# j the intersection of K, and K is empty or

a common face (for more details see [7]).
Let any pe NuU {0} be given. For each i=1,..,q suppose that V,
denotes a finite-dimensional linear subspace of C”(K;) having the following
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such that v(#) =0 for every 7€ K, satisfying ||t — 7} <&, then v =0 on K.
A prototype of V, is the linear space /1, of polynomials of total degree
at most m (m e N} defined on R*.
We define the linear space S of generalized splines of smoothness p by

property: Let ve V; and fe Z(v) :={re K;: v(t)=0}. If there exists ¢>0

S :={se CP(K): for every i e I there exists s,€ V; such that
s, =50, 1eK;}. (2.1)

Suppose that {u,, .., u,} denotes a system of linearly independent func-
tions in S. Define

U:=spanf{u,,..,u,}.

In the following we consider subsets 7'= {r,, .., t',} of K (s <n) where we
always assume that ;5 ¢, if i3 j. We shall need the following notations.

DermNiTION 2.1, T is called an interpolation set (I-set) with respect to U
(w.r.rU) if

dim U] ,=s.

Otherwise, T is called a noninterpolation set (NI-set) w.r.t.U.

7T 1s called an almost interpolation set (Al-set) wr.t U if for any ¢>0
there exist points f,e K, i=1, .., s satisfying lt,— 7| <& i=1,..s such
that {7, ...7,} is an I-set w.r.t.U.

Moreover, by card(M) we denote the cardinality of a finite subset M
of K.

Let a subset R:= U‘;:| K, of K be given where {i, ..., i} <1 Then the
interior of R with respect to K is defined by

int,\-R:=K\‘u\ U K.

Ve Ny, i)

In [77 we have introduced a property which has been inspired by a well-
known condition of Schoenberg and Whitney ensuring uniqueness of
Lagrange interpolation by univariate splines with fixed knots (Schoenberg
and Whitney [4]; see also Schumaker [5]).

DeFINITION 2.2, Let T={¢,,..,¢,} €K (s<n)and U=span{u,, ... u,}.
We say that T satisfies a condition of Schoenberg—Whitney type or T 1s an
SWT-set wr.t.U if

card(Tnint, R) < dim Uj,,, 0

for every choice of subsets R:={(J]_, K; of K where {7, ... i} 1.
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The main result in [ 7] can now be stated as follows.

THeorem 2.3 [7). Let T={1,, ...t} and U=spanfu,, .., u,}. Then T
is an Al-set wrt.U if and only if T is an SWT-set wr.t.U.

We shall use this statement tn Section 3 to treat the problem of how to
change an Al-set to an I-set. To these investigations two results also given
in [7] are very useful.

PrOPOSITION 24 [7]). Let T={1,, ...t} =K (s<n) and assume that U
denotes an n-dimensional subspace of S. Then the following conditions are
equivalent.

(1) T is an SWT-set wr.t.U,

(1)  For each basis {u,,..,u,} of U there is some permutation o of
{1, ....n} such that

t,€S, =supp i, =€ K u, (H#0)., i=1, .5

ProposiTION 2.5 [7). Let T={1, ... t,} €K and assume that T is an
SWT-set wat.U=spani{u,, .., u,}. Then for every ¢ >0 there exists a sel
T={1,..1,} <K satisfying

(1) T is an SWT-set wr.t.U:
(ii) for cvery ie{l, .. s} there exists jel such that t.€e K, and
f,eint, K,

(i) 11, =1l <& i=1, .5

3. INTERPOLATION BY MULTIVARIATE SPLINES

Assume now thatin (2.1), V,=11,,, iel, 1.e, S is a space of multivariate
polynomial splines.

As an application of Theorem 2.3 we shall now show that every Al-set
T={t,, .., t,} can be changed to an I-set T in a very general way. Indeed,
let T={¢t,,...t,} = K being an SWT-set wr.t.U=span{u,, .., u,} and let
&> 0. By Proposition 2.5 there exists 7= {7,, ... 7,} < K satisfying

(i) Tis an SWT-set w.rt.U;

(i) for every ie{l, ... n} there exists j,el such that r,e K, and
feinty K

(i) [6,—TFl<e i=1, . n
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To determine a direction for changing f; choose any point v, einty K,
i=1,...n Then in view of (i) and (ii) above, we already know that
Vi={t,,..,v,} is an SWT-set w.rt.U. Therefore by Theorem 2.3, there
exists an I-set V:={#,,.., ¢,} such that #,e K, and |jv,— ¢, { <&, 1=1, ., n
Now considering the line through ¢, and 5, we define

l;:={1eK;: there exists A€ R such that t =1 (A)=(1—4)1,+40,},

i=1, ... n. In particular, since K; is convex, f,(A)el;if 0 <2< 1. (In fact, /,
also depends on ¢, but we may omit it, because ¢ will not be changed in
the sequel.)
We are now ready to state a result on existence of I-sets on J/_, /.
THEOREM 3.1.  Let the same hypotheses as above be given. Then there
exists a real positive number A, such that T defined by

T:=T(A) :={1,(A), ., 1,(4)}

where ti(AYel,, i=1,..,nis an I-set wr.tU for every 0 < i< A, If t{A)el,
Jor every —Ay <A <0 and every i=1, ., n, the statement is even true for
0 < |i| < ig. Moreover, if T is an I-set w.r.t.U, the statement also holds if
A=0.

Proof. Let {u,, .., u,} be any basis of U. Since ¥ is an I-set w.r.t.U, it
follows that

det(u (&))" ,_, #0.

ij=1

Set D(+) :=det(u,((,().)));fj=,, 0< /< 1. Hence, D(1)#0. Since every u, is
a polynomial of total degree at most m on K, i=1, .., n, 1t clearly follows
that u, is a polynomial in /4 of degree at most m on /,. This implies that
D(-) is a polynomial in 4 of degree at most nm, 0 <A< 1. Then it follows
from D(1)30 that D(-) has at most finitely many zeros in [0, 1).

Hence there exists 4,> 0 such that D{2)#0 for every 0 <4 < 4,.

If 1;(A)el, for every — i, <A <0 and every i=1, .., n, then defining D(1)
for —/, <A< 1 and arguing as above we obtain D(A)#0 if 0 < |2]| < 4,.

Finally, if T is an I-set, then D(0)#0, and the proof is completed. |

Remark 3.2, Since ¢ can be chosen as small as possible, the above state-
ment shows that an Al-set 7 with card(7)=n can be changed to an I-set
shifting every element 7, of 7 in nearly every direction within the
polyhedron K.

Sufficient conditions for a set T to be an I-set and algorithms for con-
structing I-sets are given in some special cases of multivariate spline
interpolation (for references see [ 7]). In the case of bivariate linear splines
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such an algorithm was developed by Chui, He and Wang (see Chui [1],
Chapter 9). Using the methods in the proof of Theorem 3.1 we shall now
examine this case more detailed and shall describe a simple algorithm to
construct a wide class of I-sets.

Let K denote a regular triangulation in R*; ie., K=J,.; K, R? where
{K,} o, is a set of triangles with the property that no vertex of K; lies on
the interior of a side of any other K, (i, jeI). Assume that {e,, .. e,}
denotes the set of all vertices of the triangles K; in K (iel). If U is the
subspace of bivariate linear splines in C(K), then it is well-known (see Chui
[1]. p- 136) that dim U=n and there exists a basis {u,, .., u,} defined
uniquely by wu,(¢;):=d;, i, j=1,..,n Of course each u, is a minimally
supported function in U. It is usually called a Courant (hat) function. We
define

Li:={treK: ult)>3}. i=1 ..n

b=

If t;e L,, then in view of 3% , u,(7;) =1 we have

Yout)=1—ulr,) <3

/=1

P4
In addition, the left-sided sum contains a4t most two terms which are non-
zero. Hence it follows that the matrix (u,(7,))},;_ is diagonally dominant
which implies that {7,, .., ¢,} is an I-set w.r.t.U for every choice of points
t,elL,i=1,..n

Starting with an arbitrary Al-set we shall now apply this fact to con-

struct I-sets as follows. Suppose that T={s,, .., 1,} is an Al-set w.r.t.U.
Then by Theorem 2.3 and Proposition 2.4 there exists some permutation o
of {1, .., n} such that

[ €S, =suppu,, i=1,..n

W.lo.g. we may assume that o(i/) =i, i=1, .., n. Moreover, by definition of
u,; we have that

S;=J {K,: e, is a vertex of K,}.

This implies that ¢,€ K;, = S, for some j,el i=1,..,n Since L,n K, # &,
we can choose any 7,€ L;n K, and define

l;:={1,€ K, there exists A€ R such that 7,=7,(A)=(1—24) 1,4+ Af}.

i=1, .., n. In particular, it follows that 7,(A)el, 0<Ai< 1.
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We are now able to show that 7 can be easily changed to an I-set on

U;’: { li'

THEOREM 3.3. Let the same hypotheses as above be given. Then there
exists a real positive number i, such that

T:=T() = {if2), ., [,(A)}

where [(A)el, i=1, .., nis an I-set wr.t.U for every 0 < A< iy If T1(A) e,
for every —Jio<A<0 and every i=1, .., n, the statement is even true for
0 <|il <iy. Moreover, if T is an I-set w.r.t.U, the statement also holds if
i=0.

Proof. The statement can be analogously proved as Theorem 3.1. |

Remark 34. (i) Let for ie {1, .., n} K, be any triangle in K such that
e, 1s a vertex of K. Assume that this triangle is defined by the vertices ¢;,
S1+ fa. Set myi=(e;+ f3)/2, I =1, 2, the midpoints of two sides in K, and
draw a line g, through a1, and mi,. Since u,(e;)=1 and u,{ ;) =0, /=1, 2,
it is obvious that u,(¢)=3 for every reg,nK,. Hence it follows that
L, K, where L, is defined as above is the triangle with the vertices ¢;, m,,
m,, except the side g, " K.

This shows that each L, can be easily determined.

(ii) The subsets {L;}7_, of K are maximal in the sense that Theorem

i=1

3.3 is no longer true if L, is extended to its closure
L={teKu(nz=ll, i=1..n

To show this let ¢, =(0,0), e, =1(1,0), e;=(1, 1), e, =1{0, 1) e R?, and let
K,. K, be triangles with the vertices ¢,,¢;, ¢, and ¢,, ¢,, ¢, respectively.
Let K=K, UK,=[0,11x[0,1] and T={1,,...14} where 1,=(5,3),
L=(2,2), 13=(3. 2), ta=1{%,3). Assume that U=span{u,. .., u,} where
ue,y=0d,. i, j=1,..,4 Then the function u,e U defined by

X, V)= {%'}',\'—)‘, if (x, )')EKI
T %*-\'-F ¥, if (x,p)ek,

satisfies uo(7,) =0, i = 1, ..., 4. Moreover, we obtain L, = K~ {(x, y): x + v —
10}, La=Kn{(x,3) x—y =120}, Li=Kn{(x, y): x+y—3>0},
Li=Kn{{x,yyx—y+1<0}. If wedefine ;e L,,i=1,...4by 7, =(10)
>=(1 %), la=(4, 1), 7, =(0, 1), we then obtain u,(7,) = 0 which shows that
uy(1y=0, telt,. 1], i=1, .., 4. Therefore, T cannot be changed to an I-set
w.r.t.UU when shifting T on the straight lines through ¢, and 7,, i=1, .., 4.

~1
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4. INTERPOLATION BY (GENERALIZED SPLINES

Throughout Sections 4-6 we shall assume that K=[a, 5] = R. Hence by
definition of K there exists a knot partition A:a=x,<x, < --- <x,,,=b
(r20) such that K,=[x,;,~; .}, /=0, ..r and

K= (j K,={a, b].

i=0

Associated with the partition 4 we consider finite-dimensional linear sub-
spaces U of C[a, b] such that for each i€ {0, ..., r} the space U,:= Ul has
the (NV)-property: If ue U\{0}, then u does not vanish identically on any
subinterval of K;. (Here and in the sequel a subinterval I is always assumed
to be nondegenerate; ie., I=[a, f] where a < f.)

Note that the most important examples of spaces U; with the (NV)-
property are the Haar subspaces of C(K)).

Thus associated with the partition 4 we consider linear subspaces

U:=U4):={ueCla, b]: U,:= Ul has the (NV)-property, i=0, ..., r}.
(4.1)

In [3], a special class of such spaces U was introduced. U was defined
there by Haar subspaces U, of C{K;), i=0. ..., r and by linear functionals
describing how the ith and the jth pieces u |y, and u] , respectively, of the
functions u e U are tied together. Therefore, in analogy to [ 3] we call every
U defined as n (4.1} a space of generalized splines, associated with 4 and
U,, ..., U,. We set

GS,:={Uc ([a,b):dim U=n, U is defined as in (4.1)}  (4.2)

and call GS, the class of generalized spline spaces.
Let UeGS, and T={t, ..t} <(a,b) such that s<n and
TnZ(U)= ¢ where

Z(U):={tela, b] u(t)=0 for every ue U}.

We are interested in a necessary and suflicient condition for T ensuring
dim U|],=s. {The assumption T < (a, b) cannot be omitted as we shall
show in Remark 4.11.)

In view of Theorem 2.3, we already know that in the case when s =n the
set T is an Al-set w.r.t.U if and only if 7 is an SWT-set. Hence it seems to
be natural to consider subsets 7 of [«, b] satistying a slightly stronger
condition.
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DeriNITION 4.1, Let UeGS, and T={r,, .., 1.} <(a, b)\Z(U). Then
we say that T satisfies a strong condition of Schoenberg—Whitney type or T
is an SSW-set wr.tUif

card(Tn R)<dim Ul

for every choice of subsets R:=U)j_, K, of [a,b] where
0<iy< - <i;<r.

This condition is obviously necessary for T to be an I-set w.r.t.U.

LemMma 4.2, If' T is an [-set wr.t U, then T is an SSW-set w.r.r.U.

Proof.  Suppose that 7 is an I-set but fails to be an SSW-set. Hence

c:=card(Tn R)>dim U|,:=7
for some R:={)/_,K,. Thus we could interpolate arbitrary data
{¥(ew ¥} by Ulg at T R which contradicts ¢ > ¢ ||

Remark 4.3. A simple example shows that the converse of the above
statement is not true in general:

Let K=[—1,1] and —1=x,<x~x,=1. Assume that U=span{u,.u,}
where u, =1 and uy{1r) := 1>, te K. It then follows immediately that T is an
SSW-set w.r.t.U whenever T={r,,t,} and —1 <t, <t,<1. On the other
hand, the function a’u, —u, has the zeros —a«, a where 0 <x <1 which
implies that T, :={ —a, «} fails to be an L-set.

This remark leads us to make the following definition.

DeFINITION 44, Let Ue GS,. Then U is said to have the SSW-property
(respectively the SSW -property) if every SSW-set T w.r.t.U (respectively
every SSW-set 7 w.r.t.U such that card(7) =) 1s an I-set.

Moreover, U is said to have the weak SSW-property if U has the SSW -
property and every SSW-set T wurtU such that card(T)<n and
To )] _,intg K, is an I-set.

We are now interested in which generalized spline spaces possess these
interpolation properties. It turns out that in this context the class of weak
Chebyshev spaces plays an important role.

DErFINITION 4.5. An n-dimensional subspace U of (Ta.b] is called a
weak Chebysher or WT-space if every ue U has at most # — 1 sign changes;
i.e., there do not exist points ¢ <z, < --- <z, ., <b such that

wz)u(z, 1) <0, i=1, .., n
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We define
WT, ={UcCla, b]:dim U=n, Uis a WT-space}

and are now ready to state the main results of this section.

THEOREM 4.6. Let Ue GS, and assume that Ue WT,. Then U has the
weak SSW-property.

The proof of this statement will be given in Section 6. We now show by
an example that in the preceding theorem the weak SSW-property cannot
be replaced by the SSW-property.

ExampLE 4.7. Let K=[—2,2] and K,=[x,,x;,,;] where x,=/—2,
i=0, ... 4. Suppose that U=span{u,, .., u,} where u,(t):=1, 1€K,

Us(t) =

{0, if re[-2.1]
1. if re[l,2),

uy(1Yi=us(—t), te K and

m__{o, if re[—2, —17u[L 2]
AN i e[ =110

It is easily verified that UeGS,;nWT, and Z(U)=¢. Let
T:={—3/2, —1,1}. Then it is easily seen that T is an SSW-set w.r.t.U. But
T fails to be an I-set, since dim U| ;=2 <card(T).

This shows that U does not have the SSW-property.

We now show by a simple example that the converse of Theorem 4.6 is
not true.

ExaMpPLE 48. Let K=[—1,1], xo=—1, x;=1 and U=span{u,}
where u,(t):=¢t, te[—L 1] If T={6,} =(—1, 1)\{0}, then T is trivially
an SSW-set w.r.t.U. Moreover, u,(7,) #0 which implies that U has the
SSW-property. But U¢ WT |, because u, has a sign change at 1=0.

We shall now show that the converse of Theorem 4.6 is true under weak
additional assumptions on U. Let 4 < R and F(4) denote the linear space
of all real valued functions on A. Following [2] we call a finite-dimen-
sional subspace U of F(A) regular if from the conditions wue U,
u(t,) us(t,) <0 where t¢,,t,e4, t,<t, it follows that there exists
te ANZ(U) such that 1, <t <t, and u(t) =0. (In particular, U is regular if
A=[a,b]. Uc(C[a, b] and Z(U)N (a, b)=.)
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THEOREM 4.9. Let Ue GS, and assume that U is regular. The following
conditions are equivalent.

(1} U has the weak SSW-property;,
(i1) U has the SSW -property;
(i) Ue WT,.

The proof will also be given in Section 6. As a consequence of Theorem
4.9 we obtain a statement on the restrictions of U to the knot intervals K.

COROLLARY 4.10. Assume that Ue GS, and has the SSW,-property.
Moreover, assume that U is regular. Then for every i€ {0, ., r} U hus the
Haar property both in [ x;, x;, \W\Z(U) and in (x;, x; ., \Z(U).

Proof. It follows from Theorem 4.9 that Ue WT,. Then by a result in
[6] Ulg, 1s a WT-space of dimension n,, i=0, ..., r. Suppose now that for
some i€ {0, .., r} U fails to have the Haar property in [x,. x;, )\Z(U).
Therefore, and by (4.1) there must exist a#e U\{0} and points
NS5 < << - <y, <2, <X, such that

(i) @=z)=0,i=1,..n;
i (¥ #0,i=1,..n,— |

Then from a result of Stockenberg ([ 8] or Theorem 2.45 of [5]) it follows
that #(¢)=0 for every te[z,.x,,.,], a contradiction of the assumption
on U,. |

Remark 4.11. In the above statements we consider subsets T=
{t,, ...t} satisfying TnZ(U)= ¢ and T < (a, b). While the first assump-
tion is trivially necessary for T to be an I-set, the assumption T<(a, b)
seems to be unnecessary. But this is not true as the following example
shows:

Let K=[-2,1] and K;,=[x;, x;,,] where x;=i—2, i=0, 1, 2, 3.
Suppose that U=span{u,, u,} where u,(¢):=t re[—2,1] and

" {o. if te[—2 —1]
Un{t) = R .
: 1% if re[—1.1].

It follows immediately that Ue GS,~ WT, and Ul is a Haar space,
i=0, 1, 2. Moreover, Z(U)=J. Let T:={ —1, 1}. Then it is easily verified
that

cardiTn R) <dim U,
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forevery R := U‘f:, K, <[ —2.1]. Hence T has the property of an SSW-set
w.r.t.U. But 7 fails to be an I-set, since u,(—1)=u,(1)=0.

This shows that Theorem 4.9 cannot be extended in the sense that U has
the SSW, -property for every T'<[a, b) or T'={(a, b], respectively.

5. THE INTERLACING AND (SW)-PROPERTY

Interpolation by generalized splines and a bigger subclass of weak
Chebyshev spaces was treated in [3] and by Davydov [2], respectively. In
this section we shall compare the results there with Theorem 4.9.

The interfacing property. let d.a=x,< - - <x,,,;=bh and K,:=
[x; x40 i=0,...r. For every ie{0,..,r} suppose that U, is a Haar
subspace of C(K;) of dimension n,> 1. Moreover, suppose that

F={r,0<i<j<ry}, Ly={(yy 7y

v ve=11

where the ;¥ and 77 are linear functionals defined on U, and U,, respec-
tively. In [ 37 a generalized spline space S was defined by

S:=S(U,,..U,;TIA)
={seCla,b)s,=s|xe U, i=0,.,rand
yosi=7lsv=1 . 0<i<j<r}. (5.1)
Comparing (5.1) with (4.2) we see that
SeGSs,, if dimS=n.

Suppose that S is defined as in (5.1) and dim S =n. To formulate the inter-
lacing property we need the notation

ngi=dim S|, . O0<i<j<gr+1.
DerFinrTioN 5.1 [3]). S is said to possess the interlacing property
provided a set T={¢, ... ¢,} where a<f, < .- <t,<bhis an I-set wrt.S

if and only if it satisfies the condition

t <X, <UL, s i=1,..,r (5.2)

neomr g

By Theorem 2.5 in [3] a characterization of which generalized spline
spaces S = S(U,, ... U,; I', 4) have the interlacing property is given. Let us
denote all the n-dimensional spaces S with this property by

IP,.
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In particular, from the results in [3] it follows that
IP,< WT,.

An important subclass of IP, forms the class of polynomial spline spaces
S,.(4) of degree m with r fixed knots. Indeed, condition (5.2) is derived
from the classical Schoenberg-Whitney condition [4]

L<X;<Uliimas i=1,..,r

which characterizes every I-set T={t,,... 1, ,,.} WrtS,(4).

The (SW)-property.  Since there exist generalized spline spaces § defined
as in (5.1) which are not contained in /P, (see Section 4 in [3] and
Remark 2.2 (ii) in [7]), in [2] a more general condition ensuring unique
Lagrange interpolation was introduced. To formulate it let 4 =R and F(A4)
denote the linear space of all real valued functions on 4. Suppose that U
is a finite-dimensional subspace of F{A4).

DEerFINITION 5.2 [2]. U is said to possess the (SW)-property provided
the condition

card(M [, f1) <dim Ul ;.5 41 (5.3)

for all a, feR, a<f 1s necessary and sufficient for every I-set M c A
w.r.t.U

THEOREM 5.3 [2]. The following conditions are equivalent.

(1) U has the (SW)-property and is a weak Chebyshev subspace of
FA4);
(i) Uly is a weak Chebyshev space for every subset A of A.
In the case of regular subspaces of F(A) (for definition see Section 4)

the (SW)-property can be even characterized by statement (i) of
Theorem 35.3.

THEOREM 54 [2]. Let U be regular. Then the following conditions are
equivalent.

(1) U has the (SW)-property,

(i) Ul 4 is a weak Chebyshev space for every subset A of A.
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It is noted in [2] thatif A =[«, b] and UelP,, then U has the (SW)-
property. The converse however is not true as we have shown in [7],
Remark 2.2 (ii), {iv) by a simple example of a generalized spline space U
which has the (SW)-property but fails to have the interlacing property.

The weak SSW-property. Theorem 4.9 states that for a regular
generalized spline space U the weak SSW-property can be characterized by
the weak Chebyshev property. Moreover, it follows from Definition 5.2
that for spaces of generalized splines the (SW)-property clearly implies the
weak SSW-property. Hence, in view of Theorem 5.4, one could ask the
question of whether for regular generalized spline spaces (SW)-property
and weak SSW-property are equivalent. This 1s not true as the following
example shows.

ExamPLE 5.5. Let K=[—-2,2] and K,=[x,, x,,,] where x,=i—2,
i=0,..4 Suppose U,=U,=span{r} while U,=U,=span{r, 1 -1},
Hence U, is a Haar subspace of C(K;), i=0,..,3. We consider the
generalized spline space

U={ueC[—2,2] u;=ulge U, i=0,..3and D _u(0)=D_, u0)}

where D_ and D, denote the left- and right-sided derivative of u, respec-
tively. This implies that U =span{u,, u,} where u,(t):=¢, te[ —2,2] and

U'y(t) =

{0, if re[—2 —17u[l,2]
1 -+ i re[—1,1].

It follows immediately that Ue GS, » WT,. Hence by Theorem 4.6, U has
the weak SSW-property.

But in view of Theorem 5.3, U fails to have the (SW)-property, because
Ul ko x, 18 spanned by the function u, which changes the sign on K, U K},
The last statement can be also obtained directly: Let T=1{7,1,} where
t,=—1,1,=1 Then

card(Tn [a, f]) <1 =dim U], 4.
if (o, Bl =2, —1] U1, 2], and
card(T [, 1) <2 =dim U|, 4,

if [a,8]1(—1,1)5 . This shows that T satisfies (5.3). On the other
hand, u,(¢,)=0, i=1, 2 which implies that U fails to have the (SW)-
property.



INTERPOLATION BY GENERALIZED SPLINES 437
6. PROOFs

Proof of Theorem 4.6. Let Ue WT,. We first show the following state-
ment.

Claim 1. U has the SSW, -property.

Proof. Assume that T={r,,...¢,} =(a, PAZ(U) such that T is an
SSW-set w.rt.U/. We have to show that T is an I-set.

Since T < {a, bY\Z(U), it is no restriction to assume that no knot interval
K, is contained in Z( U).

Assume that T fails to be an I-set w.r.t.U. Hence there exists u,e U\{0}
such that u,(t;)=0. i=1, .., n. We consider two cases.

Case 1. Suppose that u, does not vanish identically on a knot interval
K;. Then there must exist z;e(f,, 1;, ) such that uy(z)#0, i=1, .,n—1.
Moreover, since TnZ(U)= 4, for every ie{l, .. n} there exists u,e U
satisfying u,(t;) #0. Then by a result of Stockenberg ([ 8] or Theorem 2.45
of [5]) we must have ¢, =« and t,=5b, a contradiction to the choice
of T

Case 2. Suppose that u,=0 on R:=|)/_, K, <[a.b] and does not
vanish identically on a knot interval outside of R. Hence there exists
Jje{l, ... 1} such that ug#0in K, , orin K, , ;. Wlo.g we may assume
that vy #0 m K, . (In the case when #,=01in K, , and u,#0in K, , |,
all the following arguments for the left side of K, must be analogously
applied to the right side of K .) To simplify our notations we set 7, =/ and
define ¢, :=dim U{g,. Then u,=0 in K; and u,#0 in K, |, where
K;=[x~;,, x;.,]. Using arguments from linear Algebra we find points
Xp<wy < o<W, <X, such that

det(u,-(wj))‘,;‘_,.:, #0

where u, ..., 4., are functions in U which are linearly independent in K.
We extend this point set by a point set {w, ., .., w.} from (a. b) " (R\K))
where ¢ :=dim Ul such that dim U},,, ,.,=c This also follows frgm
linear Algebra and the obvious fact that dim U|z=dim Ul +dim U],
where U:={ue U u=0in K,}.

Since u,#0 in K,_,, there exists a sequence (y,,) < K, _, converging to
x; such that

Sign u()( ,"‘m) =0

for every me N where e {1, 1} independently of m. By the choice of
{w,. ..., w.} there exists a v, € U such that
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r(w)y=a(—1)y"" i=1,..,¢,
ty(w;)=0, i=ci+1, ... c
Since by assumption Ue WT,, it follows from a result in [6] that
Uly,e WT,,. Hence this implies that ov (x;)>0.
Let R:=(a, P)\R and 7 := T~ R. Recall that T Z(uy) and u, does not
vanish identically on any subinterval of R Hence if 7e T, then in every

neighborhood of 7 there exists w e R such that u,(w) # 0. Moreover, recall
that 7 is assumed to be an SSW-set w.r.t.U. Hence,

card(Tn Ry<dim Ul g=¢
which implies that card(T)=n — ¢. We now classify the set T as follows:

{te T: u, changes the sign at 1 or 1€ Z(v,)};

Z.\‘l‘ :
Z, ={te T-t¢ Z, and u,v, >0 in some neighborhood (1 — 4, ¢+ J) of 1};
Z

Il

{teT: t¢Z, and uyv, <0 in some neighborhood (1 —0J, 1+ J) of t}.

Then T=Z,uZ,uZ and Z,nZ_ = We consider three more
cases.

Cuse 2 {(a). Suppose that card(Z,)>card(Z ). Then for every suf-
ficiently small £ > 0 the function u, — ev, has at least two sign changes in a
small neighborhood of ¢ for every teZ, and a zero at ¢ or in a small
neighborhood of ¢ for every te Z,,. (even a sign change if u, changes the
sign at 7). Since Z, UZ,.< R and R is open in K, we may assume that all
these zeros are also contained in R. Moreover, u,—¢v, has ¢ —c, zeros
{We o1sa W ©R\K,. Since (Tu{w,,..w})nZ{U)=, it easily
follows that all these zeros of u,—e&v, can be obtained in (a, bH)NZ{U). In
addition, u, —¢&v, has ¢, — 1 zeros with sign changes in K, (where some of
them could be elements of Z(U)) and, since ¢ 1s sufficiently small, u, —er,
does not vanish identically on a subinterval of [a, b]\(R\K,).

Thus we can obtain a function with at least

2card(Z Y +tcard(Z )+ ¢, — 1 +c¢—¢,
zcard(Z ) +card(Z_ ) +card(Z,) +c
=card(T)+czn—c+c=n

zeros in {(a, b).
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Case 2 (b). Suppose that card(Z )>card(Z,). We then consider
uy,+¢ev; where & is a sufficiently small positive number and conclude
analogously as in Case 2 (a).

Case 2 (c). Suppose that card(Z,)=card(Z_). We consider the
function uy —ev, where ¢ is a sufficiently small positive number. Then this
function has a zero with sign change at x; or in some small left-sided
neighborhood (x, — 4, x,). Moreover, arguing as in Case 2 (a) we have that
uy —ev, has at least 2card(Z,)+card(Z,) zeros in R~ ((a, b\Z(U)),
c—c; zeros {w, .y, ... w.} <(R\K)\Z(U), and ¢, —1 zeros with sign
changes in K;. Summarizing we obtain

2card(Z ) 4card(Z, )+ 1 +c—c,+¢;,—l=card(T)+c=n—c+c=n

zeros in («, b). In addition, since ¢ is sufficiently small, u, —&v, does not
vanish identically on a subinterval of [a, b]\(R\K,).

Summary Case 2. We have obtained a function u, :=u, + ev, satisfying
the following properties:
(i) Ifu;=0in some K,c[a,b], then K, R, := R\K;
(ii) u, has at least card(T) + ¢, zeros in R, :=(a. b)\R,;
(i) u, has ¢ —¢, zeros {w, ..., w.} € R\Z(U)
Hence, since card(7T)>n — ¢, there exist zeros =z, < --- <z, eveq Of Uy in
R, with all the additional properties given in the Cases 2 (a)—(c). In par-
ticular, it then follows that =, ¢ Z{U), if u, does not change the sign at -

Let T\ i={z, s Zy_cseps Wey a1 - W} Then card(T))=n and in view
of the above properties, it is easily seen that

card(T)nR,)=c¢—¢;=dim U| g —dim Ul g, < dim Ul g,.

Hence replacing u,, T and R by «,, T, and R,, respectively we can again
apply the methods of Case 1 or Case 2 and finally obtain a function 7e U
such that & does not vanish identically on some K, j=0,..,r and & has n
zeros a4 <%, < --- <Z,<b with the additional property that each zero Z;
which fails to be a sign change of & is an element of (a.b)\Z(U). Let
Z:={7,..%,} and

Z . (4):={Z,e Z: i is nonnegative in some neighborhood of %}
Z _(a):={Z,e Z: i is nonpositive in some neighborhood of ,};
Z (i) :={Z,e Z: i changes the sign at Z,}.

If Z_(ayu Z (4)= ¢, then i would have n sign changes, contradicting
the assumption Ue WT,. Hence assume that card(Z , (#)) = card(Z (&)

64083311
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and Z (i#)# J. Let Ze Z _(&i). Since Z ¢ Z( U), there exists v, € U such that
ve(Z) >0. Then arguing as in Case 2 we obtain a function v, ;=i — ¢
(¢ > 0 sufficiently small) such that ¢, does not vanish identically on a sub-
interval of [a, b], has at least n zeros in (a, b), (Z_ (v))uZ ()N
Z(Uy=¢ and card(Z (v))) zcard(Z, (a))+]1 (where Z _(v,), Z _(v,),
Z.(v,) are sets of zeros of v, analogously defined as for the function @).

Thus it 1s clear that after a finite number of steps we obtain a function
te U with at least n sign changes, a contradiction to the assumption
Ue WT,,.

This completes the proof of Claim 1. |}

Now we show that U has the weak SSW-property which will complete
the proof of Theorem 4.6.

Claim 2. U has the weak SSW-property.

Proof. 1In view of Claim 1, we have still to show that every SSW-set
T<(a, b\Z(U) wrt.U such that card(T)=s<n and T< J/_,intx K; is
an I-set wrt.U.

Suppose that such a set 7 is given and assume that 7 fails to be an I-set.
This means that

dim U], <s.

We now construct an SSW-set 7" w.r.t.U such that T< T and card(T) =
s+ 1. Then it is obvious that

dim Ulz<s+1

which implies that T fails to be an I-set. Applying this method n — s times
we finally shall arrive at an SSW-set T such that card(7)=» and

dim U|z<n,

a contradiction to Claim 1.
Recall that 7 is assumed to be an SSW-set wrtl/ and Tc
Ui (x: x;4,)- We consider two cases.

Case 1. Suppose that
card(Tn R) <dim U|,

for every R:= U,/-:1 K, <K Then choosing any point 7e(a, b)\(Z(U)u
Tu{xy,..x,}) we define

T:=Tu{f

and clearly obtain an SSW-set w.r.t.U.
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Case 2. Suppose that
card(Tn R)=dim Ul,

!

for some R:={J;_ K, = K and assume that R is maximal in the sense that

card(T n R) < dim U/ z

for every R := UL, K, < K where I> 1.
Since card(T)<n, it follows that (x,,x;.,)nR= for some

ie{0,..,r}\{i,, ... i,}. Choosing any point fe(x,, x,,,) we define
T:=Tu{f}.
Let R:={5_, K,,. To show that
card(T'n R) <dim U| 4 (6.1)

we consider the following cases.

(i) Suppose that RcR. Since TnR=TnR and card(Tn R) <
dim Ulg, (6.1) follows immediately.

(ii) Suppose that int, R n R= ¥. We define
R:=RUR
and
U:={ue U u(t)=0 for every & R}.

We then have that dim U|z=dim Ul +dim U|. Since by definition,
Tc U (xiv xi+l)y
i=0

it follows that
card(Tn Ry =card{ T R} + card(T ~ R).
In view of the maximality of R, this implies that
card(T n R) +card(T n R) =dim U| g+ card(Tn R)
<dim U|g=dim Ul +dim U|.
Hence we obtain that
card(Tn R) <dim U| z <dim U} .

This proves (6.1).
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(iii) Suppose that R= R, U R, where R, < Rand inty R,n R= . It
follows from (i) and (i1) that

card(Tn Ry=card(Tn R,) + card(Tn R,)
<dim Ul g, +dim U], <dim Ul 4.
This proves (6.1).

Thus we have shown that T is an SSW-set w.r.t.U where card(T) =y +1
and Tc|J/_,int, K;. This completes the proof of Claim 2. ||

Proof of Theorem 4.9. Assume that U is regular. In view of Theorem
4.6, we have still to show that (1) implies (1ii). Hence assume that U has
the SSW, -property and suppose U¢ WT,. Then there exists some
uye U\{0} with at least n sign changes in («, b). Since U, is regular, this
means that there exist a<zy<!,<z,< --- <z, ;<t,<z,<b such that
u{z)uglz; 1) <0, i=0, ..n—1, uyt;)=0and r,¢ Z(U), i=1, .., n

Let T:={t,, .., Since T<(a, b)\Z(U), as in the proof of Theorem
4.6 we may assume that no knot interval K, is contained in Z(U).

Moreover, we then can choose u, such that u, does not vanish identi-
cally in X,, i=0,..,r. To show this suppose that #,=0 in K, for some
io€ {0, ... r}. Since K, ¢ Z(U). there exists iie U with ##0 in K, . Then for
some sufficiently small ¢ the function &, :=u,+eii has at least n sign
changes and n zeros {7;}7_, = («. H)\Z(U). In addition, we have that &, # 0
in K, and if #,=0 in some K,, i#1{,, then u,=0 there. Continuing this
method for some zero interval of #,, after a finite number of steps we
obtain a function with at least »# sign changes and » zeros in (a, b)\Z(U)
which does not vanish identically in any K,, i=0,..,r. Hence we may
assume that u, has this property.

Let T={t,, .., t,} being defined as above. Then T fails to be an SSW-set
w.r.t.U. Otherwise by the SSW -property of U, T would be an I-set w.r.t.U
which contradicts the fact that T < Z(u,) and uy 0.

Since card(7T) =1 = dim U, it then follows that there exists a subinterval
I:=[x;,x,] of [a, b] such that

card(TnI)=zn;:=dim U|,
and
card(TnT) <dim U|;

for every proper subinterval 7 of /. We consider two cases.

Case 1. Suppose that
card(Tn R)<dim Ul,

for every R:=U);_ K, = I
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Choose a subset T< T~ 7 such that card(T):ni,. In particular, it
follows that

card(Tn Ry <dim U,

for every R as above. (Note that in this case I must be a proper subset of
[a,b]. since T fails to be an SSW-set w.r.t.U.)

Cuse 2. Suppose that
card(Tn R)>dim UJ,

for some R:=J;_, K, =1 and assume that the number / of knot intervals
of R is minimal in the sense that

card(T~ R)<dim U] z

for every R:= ! _, K, = I where T</.

Choose a subset 7c TR such that card(T)=dim U|,. Then by
assumption on R,

card(T n R) <dim U|;

for every R :={J;_, K,, <R

Thus in the Cases 1 and 2 we have defined SSW-sets 7 w.r.t.U|, and
w.r.t.U] ., respectively. Since Case | is obviously a special case of Case 2,
we shall only consider this case and shall complete 7 to obtain an SSW-set
w.r.tU.

Hence suppose that Case 2 is given. Recall that u, does not vanish
identically in K, k=0, .., L This implies that u,# 0 in R. To simplify the
following arguments we may assume that x,:=x,=min R, X;:=x,,,=
max R and define

U:={ueU u=0in R}.
Hence we have that K,=[x,,x;,,]<R, K, ,=[x; ;,x,]cRand
nyi=dim Ul ;3 =dim Ul +dim Ul .-
We first complete 7 to obtain an SSW-set w.r.t.U|(,, ;. We define
Uipy = 0,

U,

q

a={uelU, u=0in K}, g=i+1l,.,j—3
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Let /,,,:=dim U, |k, ,» ¢=i..j—3 Then it is easily seen that
lyy =0 K, ., eR U; ,cU;, 3&c-.-cU,,, and

Jj 3
Z 1(1+l =dlm Ul[\‘,..\,]*

¢g=1

The last equality follows, because

dlm Ul["l~-“/J = dlm UI[-"H 1ovi-1]

=dim U|y,,, +dim{ue :u=0in K, ,} ..,

REVERD |

=/, +dim Ui+zl[.\,p,.\-, .

i3

=l 1+l ,+dim Ui+1|[,\-‘+3,,\-,,.]= e = Z lq+l'

G =i

We now want to show that there exists u, ., e U,, | such that the func-
tion uy,—u, ., has at least /, | zeros in (x,, ,, X, 1)

To prove it we first assume that u,=4# in K,_, for some ie U,, ,. Then
we set u,,,:=id. Otherwise, the subspace span({u,} U U, )|, has
dimension /; . | + 1 which implies that it must contain a function u,—u;, |
with at least /; | zeros in (x,,,;, X, ).

In both cases we choose a subset 7,,, of (x,,,.Xx,,,) such that
T Z{ug—u;, ) and card(7T,; . ) =1, . (In the particular case when

K, <R, it follows that U, || ,=1{0}. Then /,  , =0 which implies that
T,.,=.) Since K,=R and U,,,= U, we have that uy—u,, ,=u, in R
and u,, , =0 n K,. Therefore, uy—u,, %0 in R.

Continuing this method in X, , we find a function u,, ,€ U, , such that
Uy—t;, —u;,, has at least [/, , zeros in (x;,.,,X,,3). Let T, ,,c
(X;12, ;1) satistying T, < Z(ug—u, . —u,,,) and card(T, . ,) =1 _,.
(In the particular case when K, ,cR, it follows that /,, ,=0 and
Ti+2=@~)

Moreover, in view of the properties of U, ,. we have that w,—u, | —
U 2=uUuZ0 in Rand ug—u, ., —u, ,-=u,—u,,, in RuK, ,. In par-
ticular, 7, , = Z(uy—u, .| —u;, ).

Continuing this process in K, 1, ... K

> we finally get a function

joa
doi=tp— . u,
g=i+1

and subsets 7, of (x,, x,, ) such that

T, < Z(ii), card(T,) =1 g=i+1,..j-2.

q1

In particular, T, = J if K, R.
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Moreover, since i, =u, in R, it follows that i,#0 in R, T< Z(ii,)
(where T denotes the subset of Z(u,) N R which was defined in Case 2) and

j—2 j-2
card(Tu U Tq>=dimU|R+ Y

¢=i+1 g=i+1

=dim U| Rt dim UI [ ;.

We set

Then by the above arguments, T'< Z(i,) [ x,. x,] and card(f“):zzi,:
dlm U]l‘r e

We shall now show that 7' is an SSW-set w.r.t. Ul .. Assuming that

AV
7
= U KmA < [-\-i’ \/]
k=1

where 1 <\m; < --- <my<j—1 we have to show that
card(Tn R) <dim U|. (6.2)

We consider three cases.

(i) Suppose that R< R. Then T'n R= T~ R and by the assumption
on R in Case 2, (6.2) follows immediately.

(11) Suppose that int, RnR= Q From the choice of T,
g=i+1, .. j—2 it then follows that T~ R=J}_, T,. . This implies that

it

M~.

card{ T Kong

7
nu Z dlm Unu

< dim Uldelm Ulg

< Unl7 1 - c

where the first inequality follows from the fact that U
U, < U and

nn

ny

by <dim U,,, |z <dim U] z.
1

W~

k

(iii) Suppose that R=R, U R, where R, =R and int, R, R= (.
Concluding as in (i) and (i1) we then have that

card(Tn R)) <dim Ulp,
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and
card(T~ R,) <dim Ulkl.

Let U:={ueU:u=0 in R,}. Since R, R, it then follows that Uc U.
Moreover, we have that

dim Ulz=dim Ul +dim U|z,.
Using these arguments we finally obtain that
card(Tn Ry =card(Tn R,) +card( T R,)
<dim Ul g, +dim U|g,
<dim U| g, +dim U]z, =dim U|z.

This proves (6.2). |

Thus we have shown that T is an SSW-set w.rt. U, . wWhere T« Z(i,)
and Gy, #0 in [x;, x;].
We now define

U:={ueUu=0in [x, x;1},
U, ,vi={ueU,;u=0in K}, g=j,..r—1
and

l,:=dim U, |, g=j, .. T

Analogously as above we complete T to a subset T of [x,, x,,,] such
that Tc Z(id,) for some Gye U, #,#0 in [x,x, ], Tnl[x,x]1="T,
card(Tn(x;, x, . N=X,_;/,=dim U, .,y which implies that
card(T)=n;+dim U,|,, ., ,,;=dim Ul and T 1s an SSW-set
wrtUl . oo

We finally apply the above method to the interval [ vy, x;] and the func-
tion i, and obtain a function i e U\{0} and a subset 7(4) = Z(i2) such that
T(i) is an SSW-set w.r.t.UU. But this contradicts the hypothesis on U to
have the SSW, -property.

Thus we have shown that Ue WT, and the proof of Theorem 4.9 is
completed. }

Nt i Near Do
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